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In Search of the Elusive Zonal Flow Using Cross-Bicoherence Analysis

P.H. Diamond and M.N. Rosenbluth
University of California, San Diego, La Jolla, California 92093-0319

E. Sanchez, C. Hidalgo, B. Van Milligen, T. Estrada, and B. Brañas
EURATOM/CIEMAT, 28040 Madrid, Spain

M. Hirsch and H. J. Hartfuss
EURATOM/IPP, 85748 Garching, Germany

B.A. Carreras
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

(Received 27 December 1999)
We show that the modulational instability growth rate of zonal flows is determined directly from the

quasilinear wave kinetic equation. We also demonstrate the relation between zonal-flow growth and the
cross bispectrum of the high-frequency drift-wave-driven Reynolds stress and the low-frequency plasma
potential by explicit calculation. Experimental measurements of the spatiotemporal evolution of the
spectrum integrated bicoherence at the L ! H transition near the edge shear layer indicate a modification
in the nonlinear phase coupling, which might be linked to the generation of sheared E 3 B flows.
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Zonal flows [1], which are toroidally and azimuthally
symmetric shear layers with a spectrum of radial scales
(n ! m ! 0, krri finite), have recently become the
subject of intense interest and investigation in magnetic
confinement physics. This surge in activity is due to new
theoretical and computational results which have pin-
pointed the crucial role of zonal-flow shear in the
self-regulation of drift-wave turbulence levels and trans-
port scalings [2,3]. As a consequence of their toroidal and
poloidal symmetry, zonal flows are intrinsically unable
to tap expansion free energy available in the plasma by
any means, since Ṽr,E3B ! 0. Thus, the only means for
exciting zonal flows is via nonlinear energy transfer from
unstable drift waves with finite ku and kk.
In this Letter, we discuss aspects of the theory of zonal-

flow shearing-as-mode coupling and also present a theory
of the cross bispectrum of the zonal-flow fluctuation with
the two short-wavelength perturbations. Recent progress in
the characterization of the nonlinear nature of broadband
fluctuations has provided a new bridge between experi-
mental measurements and turbulence models to explain the
redistribution of energy supplied to the fluctuation spec-
trum by multiple instabilities [4,5]. Relevant experimental
results [6–8] on the link between fluctuations and poloidal
flows are also presented.
It is now widely appreciated that zonal-flow shearing

plays an important role in regulating drift-wave turbulence
levels. Recently [9], it was noted that, in comparison to co-
herent shearing by the mean electric field, the broad spec-
trum of zonal flows regulates turbulence by the process of
random shearing, represented, in the spirit of quasilinear
theory, by diffusion in k space. Averaging and quasi-
linearly closing the wave kinetic equation yields
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The notation is standard and follows that of Ref. [9]. Here,
Gkr is the k-space flux (with diffusion coefficient D)
which drives evolution of the mean drift-wave spectrum
!N". Note that validity of the assumption of random shear-
ing (and therefore of the applicability of quasilinear theory)
requires overlap of resonances between drift-wave group
velocity (yg) and zonal-flow phase velocity (Vq%q), i.e., a
state of drift-wave ray chaos. The effect of random shear-
ing on drift-wave energy !´" may then be ascertained by
multiplying Eq. (1a) by vk and summing over k to obtain
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Here, !h" ! #1 1 k2r2

s $ !´" is the wave potential enstro-
phy density. Equation (2) may then be rewritten as

≠!´"
≠t

1
X
q
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It is interesting to note that the expression for gq given in
Eq. (4b) agrees with that given for the zonal-flow growth
rate in Eq. (6a) of Ref. [9]. This observation, together
with Eq. (4), shows that drift waves and zonal flows to-
gether conserve total energy. Hence, “shear suppression of
drift-wave turbulence” is simply the process whereby drift-
wave energy is coupled to damped zonal flows. Equiva-
lently, “zonal-flow generation” refers to the concomitant
gain in flow energy which accompanies the reduction in
drift-wave intensity due to energy transfer. Thus, the often-
invoked impact of shear suppression of turbulence by zonal
flows is not due to enhanced dissipation or stabilization,
but rather to nonlinear coupling of fluctuation energy to
benign, axisymmetric modes which are intrinsically inca-
pable of causing transport. The mode coupling process
responsible for drift-wave ! zonal-flow energy transfer
is one mediated by nearly isosceles triads with a thin
vertex angle. These triads have legs k1 ! k 2 q, k2 !
2k, k3 ! q, where k and q ! qr̂ are the drift-wave and
zonal-flow wave vectors, respectively (with jkj ¿ jqj).
It is also interesting to observe here that the zonal-flow
growth rate gq may be calculated directly from the quasi-

linear wave kinetic equation [Eq. (1)] using the additional
proviso of energy conservation.
Having established that zonal flows are generated by

energy-conserving triad interactions with drift waves, we
now consider the theory of their cross bispectrum. In gen-
eral, the cross bispectrum of three functions x#t$, y#t$, and
z#t$ is given by

B̂xyz#v1, v2$ ! !xyz" ! x#v1$y#v2$z#v1 1 v2$ , (4a)
so that the related cross bicoherence,
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is a normalized measure of the strength of nonlinear en-
ergy transfer between frequencies v1 and v2 as mediated
by triad interactions (see Ref. [10] and references therein).
Since zonal flows are generated by drift-wave-induced
momentum transport, the cross bispectrum of interest is
!Ṽr Ṽuf", namely, that of the radial and poloidal E 3 B
velocities of two high-frequency drift waves #k, vk$ with
the potential perturbation of the low-frequency zonal flow
#q, vq$. Here, it is understood that f refers to ef%T .
Since jkj ¿ jqj, vk ¿ Vq, it follows that
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Note here that N ! N#f$ ( #dN%dfq$fq follows from
the fact that the nonzero contribution to the cross bispec-
trum of Eq. (5) is due only to that part of N which is co-
herent with f. Using the linearized wave kinetic equation
to compute RedN%dfq and noting that vk≠!N"%≠kr !
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It is interesting to note that the result of Eq. (6) is very
closely related to the expression for zonal-flow growth rate
given in Eq. (8) of Ref. [6], namely,
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Indeed, when dedimensionalized, and the right side of
Eq. (7) is summed over k, the results of Eqs. (6) and (7)
are identical. Moreover, it is clear that the (wave) spectrum
integrated cross bispectrum

P
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essentially equivalent to the evolution rate for zonal-flow
energy. This is not too surprising, as triad mode coupling
involving Ṽr1k , Ṽu2k and ef%T is, in fact, the underlying
physical mechanism for pumping zonal-flow energy. Note
also that Eq. (6) gives a “first principles” theoretical pre-
diction of the cross bispectrum which is suitable for direct

comparison with experimental data and the results of nu-
merical simulations.
Since measurement of plasma potential fluctuations is,

in general, quite difficult, it is natural to investigate the
cross bispectrum of the associated density perturbations. In
that case, the quantity of interest is !#ñ%n0$2#n%n0$", where
ñ%n0 are the short-wavelength, high-frequency drift-wave
perturbations at k, v, and n%n0 is the zonal-flow density
perturbation at Vq. A short, straightforward calculation
using the methodology given above then yieldsø
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Here, h ! #1 1 k2
!r2

s $ jñk%n0j2 (i.e., ñ%n ( ef̃%T for
drift waves) and jnq%n0j2 is the zonal-flow density
perturbation intensity. Since, for zonal flows n%n0 !
2q2r2

s ef%T (with q2r2
s , 1), the cross bispectrum

!jñk%n0j2nq%n0" is smaller in magnitude than the corre-
sponding result given in Eq. (6). Also, note that a cross
bispectrum constructed from Eq. (8) should employ a sum
over positive frequencies only, to avoid spurious cancel-
lation. Otherwise, however, the correspondence between
cross bispectrum and zonal-flow growth rate persists.
Regarding the experimental evidence for zonal flows, a

reversal in the poloidal phase velocity of fluctuations has
been observed in the edge of plasma tokamaks, stellarators,
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and reversed field pinch confinement devices [11–13]. In
this region, the plasma potential has a maximum (i.e., the
radial electric field reverses direction) and the phase veloc-
ity is generally controlled by the E 3 B velocity. During
the transition to improved confinement regimes (i.e., L-H
transition), there is a change in the radial electric field,
an increase in the E 3 B shearing rate and a reduction
of plasma turbulence which is consistent with the frame-
work of the E 3 B shear turbulence reduction model [14].
Thus, such edge plasmas are natural venues for studies of
zonal-flow physics. Indeed, nonlinear properties of plasma
turbulence have been investigated in the boundary of fusion
plasmas, providing a link between experimental measure-
ments and turbulence models [4–8]. Bispectral analysis
tools have been used to study the strength of nonlinear
mechanisms in the proximity of the velocity shear layer,
using data from the Advanced Toroidal Facility (ATF) [12]
and during L-H transition in the W7-AS stellarator [6,7].
During L-H transition scenarios in the W7-AS stellarator,
there is a relatively small enhancement of the stored energy
with a concomitant reduction (but without disappearance)
in the level of fluctuations [6]. This transitioning plasma
provides a unique opportunity to investigate the interplay
between plasma flows and fluctuations in improved con-
finement regimes.
The radial profile of the total integrated bicoherence for

frequencies lower than 500 kHz for ion saturation cur-
rent fluctuations, as well as the poloidal phase velocity
of fluctuations in the edge region of the ATF stellarator,
are shown in Fig. 1. Note that there is a substantial radial
variation in the strength of nonlinear interactions near the

FIG. 1. (a) Radial profile of integrated bicoherence in ATF
shear layer; and (b) fluctuation phase velocity profile in shear
layer.

shear location. The frequency resolved bicoherence shows
that the maxima in bicoherence are mainly due to sum fre-
quencies in the range 50–200 kHz.
The radial structure of the total integrated bicoherence

# f , 500 kHz$ during the L to H transition has also been
investigated in the W7-AS stellarator using reflectome-
try measurements [6,7]. During the transition to the im-
proved confinement regime, there is an abrupt increase of
the total bicoherence [Fig. 2(a)] simultaneous with the re-
duction in fluctuation intensity. The level of bicoherence
[Fig. 2(b)] increases at all radial positions in the plasma
bulk side of the last closed flux surface (LCFS) position
[6] [Fig. 2(b)]. The high level of bicoherence is due to the
enhanced nonlinear interaction in a wide range of frequen-
cies (10–500 kHz) [7]. Interestingly, similar results have
been reported in the L-H transition in the continuous cur-
rent tokamak using probe measurements [8].
From previous experiments, we have shown that

Reynolds stress driven flows can play a significant role in
the plasma boundary region, providing a coupling between
fluctuations and edge shear flow [15]. In the framework
of this interpretation, the modification of the bicoherence
in the proximity of the velocity shear layer in ATF and
during the L-H transition in W7-AS might reflect a
modification in the nonlinear energy transfer between
fluctuations and E 3 B flows. Indeed, the simultaneous
increase in bicoherence at the transition, along with the
peaking of the profile of integrated bicoherence in the
shear layer, together are tantalizingly suggestive of an

FIG. 2. (a) Evolution in integrated bicoherence during L ! H
transition; (b) comparison of total bicoherence in L and H
modes in W7-AS.
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L ! H transition process which is initiated by the mode
coupling-induced generation or enhancement of zonal
flows in the plasma edge. This mechanism may also
play an important role in explaining the change in the
radial electric field during the initial phase of the L-H
transition in some tokamaks, where the radial electric
field is dominated by the poloidal rotation [16].
However, it is important to stress that there are other

possible explanations of the modification of the bicoher-
ence near E 3 B sheared flows in the plasma boundary
region. Because of the complex interpretation of reflec-
tometry measurements [17–19], the modification of the
bicoherence may reflect a change in the size and amplitude
of the turbulence structure, as compared with the antenna
pattern. The phase response depends on turbulence char-
acteristics (amplitude and wavelengths), plasma profiles,
and diagnostic geometry. This is specially clear when the
diagnostic axis is not exactly parallel to the plasma den-
sity gradient as in the case of Wendelstein 7-AS and many
other machines. In this situation, the phase signal shows
a drift (usually referred to as phase runaway [19]), that
disappears only for very low turbulence levels, and phase
fluctuations would have a sawtoothlike shape. With this
basis, the modification in the bicoherence of the phase sig-
nal observed at the L-H transition may have been caused
by the modification in the nonlinear coupling of fluctua-
tions and/or by the variation of the amplitude and spatial
scales of plasma turbulence.
The relative role of these mechanisms should be clari-

fied by the investigation of the nonlinear coupling between
radial and poloidal velocity (high-frequency) fluctuations
and low-frequency fluctuations in the plasma potential.
The comparison of measurements from different diagnos-
tics (i.e., probes, reflectometry, spectroscopy) would also
be very useful. Detailed results from such comprehensive
investigations will be reported in future publications.
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